书城科普走向未来的现代工业(新编科技大博览·A卷)
14330600000010

第10章 能源科技(1)

能源的种类除人们比较熟悉的一些能源名称外,你是否听到过一次能源、二次能源;常规能源、新能源;可再生能源、不可再生能源等称呼呢?其实这些都是从不同角度对能源进行的分类。

按能源的来源可分三类:第一类是来自地球以外的太阳能。它们除了太阳直接照射到地球的光和热外,常见的煤炭、石油、天然气,以及生物质能、水能、海洋热能和风能等,都间接地来自太阳。第二类是来自地球自身的能源,其中一种是地球内部蕴藏着的地热能,常见的地下蒸汽、温泉、火山爆发的能量都属于地热能。另一种是地球上存在铀、钍、锂等核燃料所蕴有的核能。第三类是太阳和月亮等星球对大海的引潮力所产生的涨潮和落潮所拥有的巨大潮汐能。

按能否从自然界中得到补充,能源又分成可再生和不可再生两类。太阳辐射能、水能、生物质能、风能、潮汐能、海洋热能和波浪能等都是能不断地再生和得到补充的能源,所以被称为可再生能源。而煤炭、石油、天然气等化石燃料和铀、钍等核燃料,都是亿万年前遗留下来的,用掉一点就少一点,无法得到补充,总有一天会枯竭的,它们被称为不可再生能源。

根据利用能源的形态不同,又可将能源分成一次能源和二次能源两类。一次能源是指直接取自然界、而不改变它的形态的能源。例如,煤炭、石油、天然气、柴草、地热、风能、太阳辐射能等等都属一次能源范畴。二次能源是指一次能源经人为加工成另一种形露天开采煤矿的场面态的能源。例如,电能、热水、蒸汽、煤气、焦炭以及各种石油制品(诸如汽油、煤油、柴油、重油等),还有生产中的余能和余热等也都属于二次能源范畴。

根据应用范围、技术成熟程度及经济与否,又将能源分成常规能源和新能源两类。煤炭、石油、天然气、水能和核能等都已得到大规模经济开发和利用,被称为常规能源;而太阳辐射能、地热能、风能、海洋热能、波浪能、潮汐能等,因它们都是开发研究中的能源,尚未得到经济开采利用,而被称为非常规能源,亦称为新能源。

黑色金子——煤

煤是可以燃烧的含有机质的岩石。它的化学组成主要是碳、氢、氧、氮等几种元素。此外,还可能含有硫、磷、砷、氯、汞、氟等有害成分以及锗、镓、铀、钒等有用元素。

煤是古代植物深埋地下,在一定的温度和压力的条件下,经历漫长的时代和复杂的化学变化而形成的。如果将煤切成纸一样的薄片放到显微镜下,可以看到植物的细胞组织。在煤矿近旁的石头里,常可见到树枝和树叶的化石。辽宁省抚顺煤矿的一些煤块里偶尔夹有杏黄色的琥珀——昆虫和树脂的化石。这些化石都记载了煤的身世和历史。

煤的种类很多。按煤的含碳量分为泥炭、褐煤、烟煤和无烟煤四大类。一般民用的是无烟煤。乌黑而平凡的煤,经过化学加工,可生产出煤气、煤焦油、化肥、农药、合成染料、塑料、糖精、医药品和合成橡胶等产品。

世界煤炭地层分布很不平衡,大多集中在温带和亚寒带,其中北半球一条分布带是从英国奔宁山麓向东横越法国、德国、波兰、俄罗斯,直到我国的华北和东北;另一条则横亘于北美中部。在南半球,煤田仅分布于澳大利亚和南非的温带地区。就煤炭储量而论,以俄罗斯最为丰富,约占世界总储量的43.5%。煤层最厚的是加拿大西部不列颠哥伦比亚省加合特河煤田,地质储量为100亿吨,已探明的储量达14.6亿吨,煤层总厚度达300米。

我国煤炭资源也很丰富,地质储量约为1.4万亿吨,煤田主要分布于华北的山西和内蒙古等省、区,其中仅山西省储量就达400亿吨,东北抚顺的煤田地层厚达120米。

近些年,地质学家又在南极大陆发现了世界上最大的煤矿,估计蕴藏量要比其他地方煤储量总和还要多几倍。

煤变的“石油”——水煤浆

煤在运输和使用上不如石油方便,但储藏量丰富,价格也便宜。要是能将煤变成石油该多好啊!

1982年夏天的一个下午,一个美国专家在清华大学演讲厅里做了一个有趣的表演:他双手各持一杯掺水30%的煤粉,一杯煤粒较粗,一杯较细。他举起这两个杯子说:“我现在要将两杯煤水混合物变成‘油’,如果失败,愿请大家吃烤鸭。”说着,将两杯掺水的煤粉倒在一起,用玻璃棒搅拌起来。不一会,泥土似的煤水混合物竟渐渐地变稀了,终于成了重油似的液体。这就是煤变的石油——水煤浆。

水煤浆最初是由油煤浆发展来的。当时有人将煤与油对半混合,加上一点添加剂后,煤就会像油一样流动。石油可以燃烧,油煤浆可以说是“火上加油”了。但油的价格贵,而且粘性大,因而实用价值较低。

煤和水混合为什么能变成“油”呢?因为煤和油是同一“娘胎”的兄弟。它们的主要成分都是碳和氢,并含有少量的氧、氮、硫等元素。只是煤的含氢量比石油低得多,而含碳量则和石油差不多。所以,水的加入就是设法把煤的碳、氢元素重量的比例降低,达到接近石油的含量,这样它们的“性格”就接近了。

这种煤变的“石油”还能在烧油的锅炉里使用。科学家做了一个特殊的喷嘴,使水煤浆与空气混合,像雾一样地喷出。对锅炉不用作很多的改造,就能迅速点燃,越烧越旺。

细菌造油

加拿大多伦多大学的魏曼教授,很早就发现了几种能够“制造石油”的细菌。这些微生物的组织结构中,几乎80%是含油物质。在电子显微镜下,它们很像一个个的塑料口袋,里面装满了油。

魏曼把这类微生物放在一起,用二氧化碳喂养,就组成一个“微生物产油田”,结果在实验室里制造出4公斤油,这种油很像柴油。

实际上,石油也是从千奇百怪的小生物变来的。古代的水生生物埋藏在地下,经过大自然的作用变成了石油。它的主要成分是碳和氢。

科学家们发现,有不少微生物不仅会“吃”这类碳氢化合物,而且还有“积存”碳氢化合物的本领。比如,有一种叫分枝杆菌的微生物,它能够产生类似于碳氢化合物的霉菌酸,像酿酒、制酱那样,经过酶的催化作用聚合到一起,就得到了一种真正的菌造石油。

根据这个原理,建造一个人工湖,把微生物“放养”到水里,水里溶解有足够的二氧化碳,作为它们的“食物”,用不了多久,微生物便成千成万倍地繁殖。培养出来的微生物,可以用过滤器收集,然后送到专门的工厂里去“炼油”。

让细菌造石油,只要二氧化碳供应充足,造油速度很快,两三天就能收获一次。细菌造油的人工湖和炼油厂到处可以建造,生产持续不断,风雨无阻。据说,只要掌握天时地利,每亩水面每年就能够生产3700桶原油。

人造石油

石油不仅是重要的能源,而且也是工业中化工产品(如塑料等)的重要原料。但地球上石油的储量毕竟有限,科学家们预测,到21世纪末,地球上的石油资源可能会被开采殆尽。因此,寻找石油代用品已是大势所趋。这就提出了生产“人造石油”来替代原始石油的问题。

石油的主要成分是碳和氢,要生产出石油代用品来,其中的成分就必须以碳和氢为主。大家知道,煤作为一种燃料,也是以碳为主要成分的物质,其中也含有氢,但氢的含量却远远低于石油。由于煤在地球上的储藏量比石油大得多,因此有些科学家设想,将煤加上氢,使其中氢的含量增加。当煤中的碳氢比例接近石油时,煤炭也就被液化成为人造石油了。这一设想不仅在理论上是有根据的,在实践中也已经完全能够做到。通常的办法是在煤中加氢之后再加上高压,这叫直接液化石油。还有一种办法是先将煤气化产生合成气体(主要由一氧化碳和氢气组成),再进一步将合成气体液化成液体燃料或化工产品,这叫间接液化。

南美洲的一些国家用间接液化技术生产出烃类燃料、有机合成原料(如乙烯、丁烯及蜡类等)和富氢化合物、实现了煤的综合利用。而德国、日本、美国和中国都采用直接液化技术。比如我国已建成有世界水平的液化实验室,并准备在山东衮州煤矿用煤进行液化生产人造石油的实际应用。

生产人造石油还有另一条途径,这就是“种植”石油。提出石油可以种植,也许有人以为是“天方夜谭”。这不奇怪。

阿凡提“种金子”的故事差不多家喻户晓,但是金子实际上是种不出来的。生产石油靠钻井。大庆油田、大港油田和克拉玛依油田等,都是靠钻井,把地下的石油抽出来,这似乎是天经地义的事。但是有人就敢于幻想:既然花生油、菜籽油、玉米油、桐油、豆油可以在地里“种”出来,为什么石油就不能“种”出来呢?

美国化学家卡达文是位诺贝尔奖获得者,他就相信石油可以“种”出来。1987年他就说,人完全可以像生产花生油之类的油一样,从有机植物中直接生产出可以当作燃料的石油来。并且,他到处寻找能生产石油的植物。

功夫不负有心人,他终于发现了许多能“挤”出石油来的植物。一天,他发现一种小灌木的树干里含有大量像乳汁一样的东西,只要把树皮划破,乳汁就流了出来,就像橡胶树能流出橡胶汁一样。他把这种乳汁拿去化验,发现其中的主要成分就是和石油一样的碳氢化合物。他把这种小灌木称为“牛奶树”,有人也叫它绿玉树。总之,这是一种可以“种”出石油来的树种。后来,人们又发现一种续随子树也能流出乳汁来,这种树高约一米,一年可收获一次,而且既耐严寒又耐干旱。还有一种灌木叫三角大戟,树皮很柔软,划破树皮后也能流出含石油成分的乳汁来。

无形的煤——风能

大风包含着巨大的能量:风速为每秒9~10米的五级风吹到物体表面上,每平方米面积受力约100牛;风速为每秒20米的九级风,每平方米面积上受力约500牛;飓风的风速可达每秒50~60米,每平方米物体表面受力为2000牛。

如果把风力开发出来的人类服务,那将是一笔巨大的财富。据有关科学家测算,全世界每年燃烧黑煤发出来的能量,只及风力在一年内可为我们提供能量的1/3000。所以,有人将风能称作我们肉眼看不见的“无形的煤”。

由于风能的大小与风速的立方值成正比,因此,风力发电机应尽可能安装在理想的风场,这种风场就称作“风力场”。近年来,各国在选定的“风力场”上,集中了一大批风力发电站,联合向电网供电。

这项新技术为大规模经济地开发利用风能,节约矿物燃料和水力资源,保护地球生态环丹麦在风力发电方面居世界领先地位境,解决日益增长的用电需要,开辟了一条新路。

发展和利用风能,如同发展和利用核能、太阳能、地热能一样,在世界范围内已成为一个“热门”领域。不过,风力的大小有着明显的地区性和季节性。因此,如何把风能有效地储存起来,让它“细水长流”或者备以急用,是当前世界各国研究、利用风能的重要课题。储存风能的方法主要有如下几种:

氢气储能日本科学技术厅在世界上首先提出了将风能变成热能,再用热能去产生氢气,然后加以储存的研究计划,并于20世纪80年代中期在秋田县进行了实验。科学家们设计了一套风能储存装置,它由风车、发热装置以及蓄热装置组成。

压气蓄能利用风力将空气压缩储存起来,待需要时放出压缩空气推动燃气轮机发电,这是储存风能的一种有效办法。它可以节约大量燃料,使发电成本降低,并能保证提供稳定的电能。

风力充电把电能转变为化学能,又把化学能转变为电能,这就是蓄电池的工作原理。将风能转变为化学能,是又一种别开生面的储存风能的方式。

核能发电

自从美国三里岛核电站1979年发生核泄漏事故和前苏联切尔诺贝利核电站1986年发生大爆炸事故后,世界上许多人对核电站产生了极大的恐惧心理,真有点谈核色变。后来,许多人坚决反对再建核电站,甚至在核电站附近组织示威。

发展核电是可持续发展战略的重要组成部分核电站发生事故通常有两种原因,一是反应堆本身的设计不当,二是操作人员违反操作规程。三里岛事故属于前一种,切尔诺贝利核电站既有设计不当因素,又违反了操作规程,因此事故造成的人员伤亡和财产损失都非常惨重。

但不管是什么原因,设计人员都有难以推卸的责任。难道违反操作规程还要设计人员负责?对!即使是操作不当,也不能对人的安全造成威胁。1996年11月13日中央电视台《东方时空》节目专门播送了常州生产的长鹿牌电热水壶在水烧干后发生爆炸的事件,使一位8岁的小男孩双目炸伤,几乎失明。水壶烧干虽属不正常操作,但设计人员理应考虑当发生不正常操作时发生的严重后果。但该产品却没有设计相应的保护装置,被消费者协会定为不合格产品。同理,核电站的安全也完全掌握在设计人员手中。这无疑对核电站的设计人员提出了严峻的挑战。也就是说,除非是敌人的故意破坏,你就必须保证核电站的绝对安全,否则你就不配当核电站的设计师。