书城科普数学教学的趣味题型设计
12375800000011

第11章 数学教学的趣味题型推荐(6)

以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。

根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,这又该如何推论?请你们试着自己推论一下。]

65.两张小纸片

Q先生和S先生、P先生在一起做游戏。Q先生用两张小纸片,各写一个数。这两个数都是正整数,差数是1。

他把一张纸片贴在S先生额头上,另一张贴在P先生额头上。于是,两个人只能看见对方额头上的数。

Q先生不断地问:你们谁能猜到自己头上的数吗?S先生说:“我猜不到。”P先生说:“我也猜不到。”S先生又说:“我还是猜不到。”P先生又说:“我也猜不到。”S先生仍然猜不到,P先生也猜不到。S先生和P先生都己经三次猜不到了。可是,到了第四次,S先生喊起来:“我知道了!”P先生也喊道:“我也知道了!”

问:S先生和P先生头上各是什么数?

[答案:“我猜不到。”这句话里包含了一条重要的信息。

如果P先生头上是1,5先生当然知道自己头上就是2。5先生第一次说“猜不到”,就等于告诉P先生,你头上的数不是1。

这时,如果S先生头上是2,P先生当然知道自己头上应当是3,可是,P先生说“猜不到”,就等于说:S先生,你头上不是2。

第二次S先生又说猜不到,就等于说:P先生头上不是3,如果是这样,我头上一定是4,我就能猜到了。

P先生又说猜不到,说明S先生头上不是4。S先生又说猜不到,说明P先生头上不是5。P先生又说猜不到,说明S先生头上不是6。

S先生为什么这时猜到了呢?原来P先生头上是7。S先生想:我头上既然不是6,他头上是7,我头上当然是8啦!

P先生于是也明白了:他能从自己头上不是6就能猜到是8,当然是因为我头上是7!

实际上,即使两人头上写的是100和101,只要让两人对面反复交流信息,反复说“猜不到”,最后也总能猜到的。

这类问题,还有一个使人迷惑的地方:一开始,当P先生看到对方头上是8时,就肯定知道自己头上不会是1,2,3,4,5,6;而S先生也会知道自己头上不会是1,2,3,4,5。这么说,两人的前几句“猜不到”,互通信息,肯定是没用的了。可是说它没用又不对,因为少了一句,最后便要猜错。]

66.两个机灵的朋友

菲德尔工长有两个聪明机灵的朋友:S先生和P先生。

一天,菲德尔想考考他们,于是,他便从货架上取出11种规格的螺丝各一只,并按下面的次序摆在桌子上:

M8×10M8×20

M10×25M10×30M10×35

M12×30

M14×40

M16×30M16×40M16×45

M18×40

这里需要说明的是:M后的数字表示直径,×号后的数字表示长度。

摆好后,他把S先生、P先生叫到跟前,告诉他们说:

“我将把我所需要的螺丝的直径与长度分别告诉你们,看你们谁能说出这只螺丝的规格。”

接着,他悄悄把这只螺丝的直径告诉S先生,把长度告诉P先生。

S先生和P先生在桌子前,沉默了一阵。

S先生说:“我不知道这只螺丝的规格。”

P先生也说:“我也不知道这只螺丝的规格。”

随即S先生说:“现在我知道这只螺丝的规格了。”

P先生也说:“我也知道了。”

然后,他们都在手上写了一个规格给菲德尔工长看。菲德尔工长看后,高兴地笑了,原来他们两人写的规格完全一样,这正是自己所需要的那一只。

问:这只螺丝是什么规格?

[答案:对于聪明的S先生来说,在什么条件下,才会说“我不知道这只螺丝的规格?”显然,这只螺丝不可能是M12×30、M14×40、M18×40。因为这三种直径的螺丝都只有一只,如果这只螺丝是M12×30,或M14×40,或M18×40,那么聪明而且知道螺丝直径的S先生就会立刻说自己知道了。

同样的道理,对于聪明的P先生来说,在什么条件下,才会说“我也不知道这只螺丝的规格“?显然,这只螺丝不可能是M8×10、M8×20、M10×25、M10×35、M16×45。因为这五种长度规格的螺丝各只有一只。

这样,我们可以从11只螺丝中排除了8只,留下的是三种可能性:M10×30、M16×30、M16×40。

下面,可以根据S先生所说的“现在我知道这只螺丝的规格了”这句话来推理。用推理形式来表示:如果这只螺丝是M16×30或M16×40,那么仅仅知道螺丝直径的S先生是不能断定这只螺丝的规格的,然而,S先生知道这只螺丝的规格了,所以,这只螺丝一定是M10×30。]

67.传教士和野蛮人

三名传教士和三个野蛮人同在一个小河渡口,渡口上只有一条可容两人的小船。问题的目标是要用这条小船把这六个人全部渡到对岸去,条件是在渡河的过程中,河两岸随时都保持传教士人数不少于野蛮人的人数,否则野蛮人会把处于少数的传教士吃掉。这六个人怎样才能安全渡过去?

[答案:可以这样渡河

1.一名牧师和一个野蛮人过河;

2.留下野蛮人,牧师返回;

3.两个野蛮人过河;

4.一个野蛮人返回;

5.两名牧师过河;

6.一名牧师和一个野蛮人返回;

7.两名牧师过河;

8.一个野蛮人返回;

9.两个野蛮人过河;

10.一个野蛮人返回;

11.两个野蛮人过河。

这里关键的一步是第6步,许多人不能解决此题,就是没有想到这一步。]

68.大小灯球

《镜花缘》写了一个才女米兰芬计算灯球的故事——

有一次米兰芬到了一个阔人家里,主人请她观赏楼下大厅里五彩缤纷、高低错落、宛若群星的大小灯球。

主人告诉她:“楼下的灯分两种:一种是灯下一个大球,下缀两个小球;另一种是灯下一个大球,下缀四个小球。楼下大灯球共360个,小灯球1200个。”

主人请她算一算两种灯各有多少。

[答案:一个大灯球下缀两个小灯球当是鸡,一个大灯球下缀四个小灯球当是兔。

(360×4-1200)÷(4-2)=240÷2=120(一大二小灯的盏数)

360-120=240(一大四小灯的盏数)]

69.四个孩子赛跑

A、B、C、D四个孩子在操场上赛跑,一共赛了四次——其中A比B快的有三次,B比C快的也有三次,C比D快的也是三次。或许大家会想到D一定是最慢。可事实上,在这四次中,D也比A快三次。

这是怎样一种情况呢?

[答案:假如四次的名次分别为:

1.A、B、C、D;

2.B、C、D、A;

3.C、D、A、B;

4.D、A、B、C。

在1、3、4次A比B快,在1、2、4次B比C快,在1、2、3次C比D快,而在2、3、4次D就比A快。]

70.国会竞选

国会议员竞选开始时,H曾为参加或不参加竞选的问题发愁了很久。想来想去拿不定主意,最后他想,还是听命于天吧。于是向两位高明的算命先生A、B请教,他们分别作了回答。

A讲完他的话之后,说:“我所说的有60%正确。”

B讲完他的话之后,说:“我所说的只有30%正确。”

结果,他就依照B的占卦去办了。

为什么呢?

[答案:因为按B的相反意见去办,其正确率可达70%。

B的判断只有30%正确,自然70%就是不正确的了。在两者选一的条件下,违背他说的意见去办,就可以有70%的正确性。而A的判断只有60%是正确的,相比之下,正确率当然要小了。

对某种判断,如果从反面去推究,往往会得出意想不到的结果。]

71.耕地能手和播种能手

新德里郊区有个庄园主,雇了两个小工为他种小麦。其中A是一个耕地能手,但不擅长播种;而B耕地很不熟练,但却是播种的能手。庄园主决定种10公亩地的小麦,让他俩各包一半,于是A从东头开始耕地,B从西头开始耕。A耕地一亩用20分钟,B却用40分钟,可是B播种的速度却比A快3倍。耕播结束后,庄园主根据他们的工作量给了他俩100卢比工钱。

他俩怎样分才合理呢?

[答案:每人一半,各拿50卢比。因为不论每个人干活速度如何,庄园主早就决定他们两人“各包一半”。因此他们二人的耕地、播种面积都是一样的,工钱当然也应各拿一半。]

72.牛津学者的难题

随身带着20卷亚里士多德的书籍的牛津学者,向自己的同伴提出难题时,他说:

“不知什么缘故,我一直在思索用奇妙的咒符来防备瘟疫和其他凶祸的问题,这种极端玄妙的物件与幻方有关。但我昨夜发明的小小难题,对大家不会有太大的困难。不过,这道题,不需要太大的耐心。”

接着,学者拿出一个正方形,如下图所示。他要人们沿图上的直线裁开,分成四块,然后重新加以拼合,再一次得到正确的幻方,其每行、每列及两条对角线上的和数都等于34。

115512

81049

116162

143137

[答案:如图所示,按下列方法将正方形分为4块再拼成正方形,每行、每列及每条对角线上的和都是34。

111616

81439

155122

104137]

73.泰巴的难题

也许,任何一个难题也没有像这道题那样激起这么多的欢乐,这是泰巴旅店老板哈利·裴莱提出的。他一路上陪着这一伙朝圣者,有一次他把同伴一齐叫来,说:

“我的可敬的老爷们,现在轮到我来稍微启迪你们的心智。我给你们讲一个难题,它会便你们大伤脑筋。但毕竟,我想你们最后会发现,它很简单。请看,这儿放着一桶绝妙的伦敦白啤酒。我手里拿着两个大盅,一个能盛五品脱,另一个能盛三品脱。请你们说说看,我怎样斟酒,使得每盅都恰有一品脱?”

回答这个问题,不许使用任何别的容器或设备,也不许在盅子上作记号。

[答案:由索维尔克小旅店“泰巴”快乐的东家提出的难题,比其他朝圣者的难题更通俗。

“我看,我的殷勤的老爷们,”他扬声说,“太妙啦,我的小小诡计把你们的头脑弄糊涂了。要在这两个盅子里都斟上一品脱酒,不许用其他任何容器帮助,这对我来说是毫不困难的。”

于是,泰巴旅店的老板开始向朝圣者们解释,怎样完成这最初认为简直不能解决的问题。他立刻把两个盅子都斟满,然后将龙头开着让桶里剩下的啤酒都流到地板上(对于这种做法,同伴们坚决提出抗议。但机智的老板说,他确切知道原来桶内的啤酒量比八品脱多不了多少。请注意,流尽的啤酒量不影响本题的解)。他再把龙头关上;并将三品脱盅子内的酒全部倒回桶中,接着把大盅子的酒往小盅子倒掉三品脱,并把这三品脱酒倒回桶中,他又把大盅剩下的两品脱酒倒往小盅,把桶里的酒注满大盅(五品脱),这样,桶里只剩一品脱。他再把大盅的酒注满小盅(只能倒出一品脱),让同伴们喝完小盅里的酒,然后从大盅往小盅倒三品脱,大盅里剩下一品脱,又喝完小盅的酒,最后把桶里剩的一品脱酒注入小盅内。这样朝圣者们怀着极大的惊讶与赞叹之情,发现在每个盅子里现在都是一品脱啤酒。]

74.粗木匠的难题

粗木匠拿来一根雕刻着花纹的小木柱说:

“有一次,一位住在伦敦的学者,拿给我一根3英尺长,宽和厚均为1英尺的木料,希望我将它砍削、雕刻成木柱,如你们现在看到的样子。学者答应补偿我在做活时砍去的木材。我先将这块方木称一称,它恰好重30磅,而要做成的这根柱子只重20磅。因此,我从方木上砍掉了1立方英尺的木材,即原来的三分之一。但学者拒不承认,他说,不能按重量来计算砍去的体积,因为据说方木的中间部分要重些,也可能相反。请问,我在这种情况下怎样向好挑剔的学者证明,究竟砍掉了多少木材?”

乍一看,这个问题很困难,但答案却如此简单,以致粗木匠的办法人人皆知。这种小聪明在日常生活中也是很有用的。

[答案:木匠说,他做一个箱子,内部的尺寸精确得与最初的方木相同,即是3×1×1。然后,他把己雕刻好的木柱放入箱内,而在空档处塞满干沙土。然后,他细心地振动箱子,使得箱内沙土填实并与箱口齐平。然后,木匠轻轻取出木柱,不带出任何沙粒,再把箱内的沙土捣平,量出其深度便能证明,木柱能占的空间恰为2立方英尺。这就是说,木匠砍削掉一立方英尺的木材。]