书城童书材料世家
9746800000073

第73章 神秘的金属记忆力

人类有记忆能力,这是天经地义的事,没有什么可怀疑的。如果说金属也有记忆能力,那人们会感到很惊奇。而事实上,确实发现金属也有记忆能力。

1958年,美国海军军械实验室冶金师布勒在研究镍—钛(Ni—Ti)合金时无意中发现,在不同温度下镍—钛合金相碰撞时,发出不同的声音。刚从炉子里取出的合金棒相碰撞发出清脆的声音,而冷却到室温后,则发暗哑迟钝的声音。他敏锐地意识到,温度对合金的组织结构和硬度可能有很大影响,但并未注意到是一种记忆现象。后来在1963年的一次实验中,需要用镍—钛合金丝,因为得到的镍—钛合金丝是弯弯曲曲的,使用起来不方便,所以实验前需把这些合金丝一根根拉直,然后做实验。实验中出现了令人惊异的奇怪现象:实验温度升到一定值时,这些原来拉直的合金丝突然无一例外地全部变成弯弯曲曲的形状。反复多次实验,结果都一样,而且发现无论你把镍—钛合金丝拉得多么直,当温度达到某一定值即称为转变温度时,就会完完全全恢复到原来的弯曲形状。这个实验过程我们可以给出一个有点人情味的描述。当环境温度远离转变温度时。镍—钛合金是没有“知觉”的,可以任凭你折腾它,随意改变它的形状。但是当环境温度一旦达到转变温度时,则镍—钛合金丝即被“唤醒”,恢复知觉,立即有“记忆力”,马上恢复到本来的面目。科学家把这种现象称为形状记忆效应。具有这种效应的合金称为形状记忆合金。镍—钛合金的转变温度为40℃,为了好记也可以称为“记忆温度”或“唤醒温度”。

合金具有奇特的形状记忆能力,从本质上说,是合金内部微观结构固有的变化规律所决定的。固态金属合金中,原子是按一定的规律有序排列的。有的合金随环境温度的变化,内部原子的排列方式也会发生变化。当温度回到原来的数值时,合金内部原子的排列又会恢复到原来的排列方式。

下页图描绘了三种不同材料进行拉伸变形,解除外力和加热等操作后所发生的结果。从中可以看到形状记忆合金与普通金属材料的不同是很明显的,而它与超弹性材料的不同在于超弹性材料是在解除外力后即恢复原状。而记忆合金要由“转变温度”唤醒其记忆力后才恢复原状。

经过20年来的发展,形状记忆合金从镍—钛合金开始,发展到镍—钛系合金、铜系合金和铁系合金等,形成系列产品。

1969年,美国阿波罗登月舱曾在月亮上安置直径数米的半球形天线。这座天线是用当时研制成功不久的形状记忆合金材料按设计要求制造的,然后降低温度把它压成一团,装进登月舱送上月宫。当天线在太阳光的照耀下温度升高到记忆温度(转变温度)时,天线的记忆力被“唤醒”,恢复了本来的形状,于是一座半球形天线便屹立于月球上了。现在,数千颗人造卫星正在天外遨游,为了向地球发射有用的信息,往往要安装形状记忆合金天线,成为人类获取天外信息所不可缺少的重要材料。

在医学上,镍—钛合金与生物体有较好的相容性,可以在人体内作为固定折断骨骼的插销,做成接骨板,使断骨紧紧相接;用记忆合金做成极精细的网络,然后降低温度压成细丝,插入血管,由于体温使它恢复了网络形状,所以在血管里起到血栓的过滤器作用;还可用于牙齿矫形弓丝、女性胸罩、人造心脏等。由于形状记忆合金应用于医学,故成为有利于人类康复的好材料。

工程上某些领域如航空、航天、核工业和海底输油管道等,为了保证系统万无一失,管道连接处常采用记忆合金管套,用形状记忆合金加工成内径比要接的管子的外径小4%的套管,然后在低温度下将套管直径扩大8%,再把要连接的两根管子从套管两端插入,当温度升到常温后,有记忆的套管就恢复原形,使管子紧密连接。

形状记忆合金可以作为智能材料应用。例如,利用它在加热和冷却时会产生伸缩力的特点,因而做成驱动机器人手臂的机构,这样就不需要传统的促动器上的齿轮、凸轮等机械机构,而由智能材料(记忆合金)自身的功能来表现。