书城童书宇宙未解之谜
4563200000020

第20章 天体之谜(3)

关于宇宙中第一颗恒星的形成,天文学家们从一套完整的自协调三维流体力学模拟方程中得到了一个结果。在当前流行的形成结构模型中,大多数假想是这个样子的:最初是暗物质为主,而伴随着由于初始低密度物质紊流而产生的不稳定状态的出现,形成了星系形成前的天体物质。由于这些天体物质是分级聚集而成,最初的气体便通过氢分子链的振动而冷却,并逐渐沉人暗物质势阱的中心。我们对分子星云的形成进行了一次高红移模拟,当高密度的低温核心气体开始由于引力而自凝聚时,拥有100M(M为太阳的质量)左右大小的高密度核心能够迅速收缩。在粒子数密度高于10M每立方厘米的地方,1M的原恒星核就能够通过三体氢分子的形成而完全分子化。与以往分析预计的结果不同的是,这一过程并不产生新的分裂,而是只形成一个恒星。而且,当光学深度效应很明显时,计算就终止了,使得完全形成后的恒星的质量成为未知数。而在计算终止时,原恒星正处于物质增加非常迅速的时期(约每年102M)。来S自该恒星的辐射反馈不仅会终止该恒星的成长,而且还会抑止处于同一形成环境中其他恒星的形成。我们得到的结论是:在一个星系形成前的晕轮中最多只会形成一个庞大(质量远大于1M)的、无金属的恒星,这与最近对贫金属晕轮恒星的质量观测结果相符。

我们的宇宙中最早的恒星是怎样形成以及什么时候形成的呢?最近的一些计算研究正在为这一问题给出答案。据初始星云核崩溃过程中恒星形成的三维计算分析结果,第一颗恒星形成于大爆炸后约一百万年每千个原子中只有一个有幸参与到第一代的恒星中去。但若要计算后来发生的复杂的星际气体动力状态及反馈的话,将不得不建立更为复杂的系统,同时要面临更大的挑战。

恒星在任何类型及处于任何演化阶段的星系中都是普遍存在的。同时,我们还发现恒星在非常广泛的环境中形成,从接近巨型的分子星云到存在于发生了星际爆发及处于聚合状态的星系中的超巨型分子星云。在我们的星系及其他的星系中那些有代表性的恒星都是作为恒星群中的一员而形成的,这就表明恒星的形成是发生在恒星群内部的事情,而不是一个个孤立的现象。对于恒星成群形成理论最大的挑战是如何理解恒星中质量的均匀分布。

在某一特定的太空空间中,某一恒星形成过程中的质量分布叫做MF。对于质量很低的褐色小星到巨大的恒星,天文学家们都估计了它们的MF。他们还对各种不同环境中恒星的MF进行了比较,发现它们的MF出乎意料地一致。这里所谈到的环境包括:在现在的一些小分子星云中处于形成状态的恒星,在大星云中处于形成状态的高密度的恒星群,及远古时为暗物质控制的贫金属外来恒星群。MF一致性的结果给现在恒星形成理论带来了挑战,因为根据现在的恒星形成理论,MF应针对不同的恒星形成条件而发生变化。

当然,以上种种仅仅还只是科学家们的推断和猜想,关于恒星真正的形成缘由,就有待人们进一步地探索和研究了。

超新星不是新星

宇宙天体也有新陈代谢吗?恒星也有生老病死吗?恒星的死亡会产生什么后果?根据现在的认识,天文学家们命名一些新天体为超新星。至于恒星为什么会死亡——爆炸,又会怎样产生,产生多少颗新星,只有天知道。

有时候,遥望星空,你可能会惊奇地发现:在某一星区,出现了一颗从来没有见过的明亮星星!然而仅仅过了几个月甚至几天,它又渐渐消失了。这种“奇特”的星星叫做新星或者超新星。在古代又被称为“客星”,意思是这是一颗“前来做客”的恒星。

新星和超新星是变星中的一个类别。人们看见它们突然出现,曾经一度以为它们是刚刚诞生的恒星,所以取名叫“新星”。其实,它们不但不是新生的星体,相反,而是正走向衰亡的老年恒星。其实,它们就是正在爆发的红巨星。我们曾经不止一次提到,当一颗恒星步人老年,它的中心会向内收缩,而外壳却朝外膨胀,形成一颗红巨星。红巨星是很不稳定的,总有一天它会猛烈地爆发,抛掉身上的外壳,露出藏在中心的白矮星或中子星来。

在大爆炸中,恒星将抛射掉自己大部分的质量,同时释放出巨大的能量。这样,在短短几天内,它的光度有可能将增加几十万倍这样的星叫“新星”。

如果恒星的爆发再猛烈些,它的光度增加甚至能超过一千万倍,这样的恒星叫做“超新星”。

超新星爆发的激烈程度是让人难以置信的。据说它在几天内倾泻的能量,就像一颗青年恒星在几亿年里所辐射的那样多,以致它看上去就像整个星系那样明亮!

新星或者超新星的爆发是天体演化的重要环节。它是老年恒星辉煌的葬礼,同时又是新生恒星的推动者。超新星的爆发可能会引发附近星云中无数颗恒星的诞生。另一方面,新星和超新星爆发的灰烬,也是形成别的天体的重要材料。比如说,今天我们地球上的许多物质元素就来自那些早已消失的恒星。

根据现在的认识,超新星爆发事件就是一颗大质量恒星的“暴死”。对于大质量的恒星,如质量相当于太阳质量的八至二十倍的恒星,由于质量的巨大,在它们演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸。这种爆炸就是超新星爆发。现已证明,1572年和1604年的新星都属于超新星。在银河系和许多河外星系中都已经观测到了超新星,总数达到数百颗。可是在历史上,人们用肉眼直接观测到并记录下来的超新星,却只有六颗。

恒星为什么会爆炸?超新星形成后是如何运行的?宇宙每天有多少超新星产生?这些都仍然是未解之谜。

脉冲星之谜

脉冲星就是高速旋转的中子星。地球自转一周是24小时,而脉冲星自转一周只须0.001337秒。可见它转得有多快唯其如此,它才能发出被人类接收到的射电脉中,从而被人类发现。如果人类没有发明射电望远镜,这类星不是就“藏在深闺人未识”了吗?

人们最早认为恒星是永远不变的。而大多数恒星的变化过程是如此地漫长,人们也根本觉察不到。然而,并不是所有的恒星都那么平静。后来人们发现,有些恒星也很“调皮”,变化多端。于是,就给那些喜欢变化的恒星起了个专门的名字,叫“变星”。

脉冲星,就是变星的一种。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,人们就把它命名为脉冲星。

脉冲星发射的射电脉冲的周期性非常有规律。一开始,人们对此很困惑,甚至曾想到这可能是外星人在向我们发电报联系。据说,第一颗脉冲星就曾被叫做“小绿人一号”。

经过几位天文学家一年的努力,终于证实,脉冲星就是正在快速自转的中子星。而且,正是由于它的快速自转而发出射电脉冲。

正如地球有磁场一样,恒星也有磁场也正如地球在自转一样,恒星也都在自转着还跟地球一样,恒星的磁场方向不一定跟自转轴在同一直线上。这样,每当恒星自转一周,它的磁场就会在空间划一个圆,而且可能扫过地球~次。

那么岂不是所有恒星都能发脉冲了?其实不然,要发出像脉冲星那样的射电信号,需要很强的磁场。而只有体积越小、质量越大的恒星,它的磁场才越强。而中子星正是这样高密度的恒星。

另一方面,当恒星体积越大、质量越大,它的自转周期就越长。我们很熟悉的地球自转一周要二十四小时。而脉冲星的自转周期竟然小到0.001337秒!要达到这个速度,连白矮星都不行。这同样说明,只有高速旋转的中子星,才可能扮演脉冲星的角色。

这个结论引起了巨大的轰动。虽然早在上世纪30年代,中子星就作为假说而被提了出来,但是一直没有得到证实,人们也不曾观测到中子星的存在。而且因为理论预言的中子星密度大得超出了人们的想象,在当时,人们还普遍对这个假说抱怀疑的态度。

直到脉冲星被发现后,经过计算,它的脉冲强度和频率只有像中子星那样体积小、密度大、质量大的星体才能达到。这样,中子星才真正由假说成为事实。这真是上世纪天文学上的一件大事。因此,脉冲星的发现,被称为20世纪60年代的四大天文学重要发现之一。

脉冲星是20世纪60年代天文的四大发现之一。至今,脉冲星已被我们找到了不少于1620多颗,并且已得知它们就是高速自转着的中子星。

脉冲星有个奇异的特性——短而稳的脉冲周期。所谓脉冲就是像人的脉搏一样,一下一下出现短促的无线电讯号,如贝尔发现的第一颗脉冲星,每两个脉冲间隔时间是1.337秒,其他脉冲还有短到0.0014秒(编号为PSR一J1748一2446)的,最长的也不过11.765735秒(编号为PSR一J1841一0456)。那么,这样有规则的脉冲究竟是怎样产生的呢?

天文学家已经探测、研究得出结论,脉冲的形成是由于脉冲的高速自转。那为什么自转能形成脉冲呢?原理就像我们乘坐轮船在海里航行,看到过的灯塔一样。设想一座灯塔总是亮着且在不停地有规则运动,灯塔每转一圈,由它窗口射出的灯光就射到我们的船上一次。不断旋转,在我们看来,灯塔的光就连续地一明一灭。脉冲星也是一样,当它每自转一周,我们就接收到一次它辐射的电磁波,于是就形成一断一续的脉冲。脉冲这种现象,也就叫“灯塔效应”。脉冲的周期其实就是脉冲星的自转周期。

然而灯塔的光只能从窗口射出来,是不是说脉冲星也只能从某个“窗口”射出来呢?正是这样,脉冲星就是中子星,而中子星与其他星体(如太阳)发光不一样,太阳表面到处发亮,中子星则只有两个相对着的小区域才能辐射出来,其他地方辐射是跑不出来的。即是说中子星表面只有两个亮斑,别处都是暗的。这是什么原因呢?原来,中子星本身存在着极大的磁场,强磁场把辐射封闭起来,使中子星辐射只能沿着磁轴方向,从两个磁极区出来,这两磁极区就是中子星的“窗口”。

中子星的辐射从两个“窗口”出来后,在空中传播,形成两个圆锥形的辐射束。若地球刚好在这束辐射的方向上,我们就能接收到辐射,且每转一圈,这束辐射就扫过地球次,也就形成我们接收到的有规则的脉冲信号。

灯塔模型是现在最为流行的脉冲星模型。另一种磁场震荡模型还没有被普遍接受。

脉冲星是高速自转的中子星,但并不是所有的中子星都是脉冲星。因为当中子星的辐射束不扫过地球时,我们就接收不到脉冲信号,此时中子星就不表现为脉冲星了。

太阳会消失吗?

万物生长靠太阳,太阳是人类生命的源泉。没有太阳就不会有人类,这是人类的共识。科学家说太阳还能照耀50亿年。50亿年之后呢?如果没有太阳人类还会存在吗?难道太阳熄灭就是人类的末日吗?我们想,那时就要看那时人类的生存智慧了。

太阳,每天赐给我们光明,并且从很远的地方给我们送来温暖。因为有了它,地球才充满生机。可以说,太阳是我们生命的源泉。

太阳是银河系里离我们最近的恒星,这颗最近的恒星相距我们1.5亿千米这样长的距离,如果是时速1400千米的超音速飞机,也要连续飞十二年才能到达如果乘坐时速200千米的高速列车,需要花八十六年时间。也就是说,一个婴儿坐上这趟列车的话,到达太阳时也只能安度晚年了如果是步行,即使日夜兼程,也要走上四千年。光速是很快的,每秒即30万千米,可以绕地球七周半,但是光从太阳那里照射到地球也需要8分19秒。

如此遥远的太阳,对地球这颗行星来说却是近远适中的。如果近若金星,表面温度灼热惊人,海洋都会蒸发得滴水不剩如果远如冥王星,只是一片冻僵的世界,无论如何也不可能成为现在的地球,不可能有生命的出现,不可能有生机盎然的世界。

地球每分钟在每平方厘米的土地上能得到太阳输送的2卡路里的热量,对整个地球来说,每分钟太阳放出相当于燃烧四亿吨煤的热量。而这么多的热量,仅仅是地球表面得到的,它只占太阳辐射出的总能量的二十二亿分之一,即使是这样,这些热量也比世界的发电量高出好几万倍。在盛夏季节,炽热的太阳还是令人望而生畏,人们会想方设法来避暑。

奥地利物理学家斯特凡总结出辐射和温度的关系,从而得知太阳表面温度达5500摄氏度,太阳中心可高达1500万摄氏度,真令人难以想象。英国天文学家金斯是这样说明高温的惊人程度的:如果在太阳中心取别针大小的一块放在地球上来,那么站在地球150千米远的人都不能幸免于难,他会被烧死。

这样炽热的天体简直像团燃烧的火球,然而是什么东西可以旷日持久地燃烧达五十亿年呢?据科学家推测,太阳寿命约一百亿年,现在正处于中年时期,也就是说太阳光耀地照射了五十亿年,并还将一如既往地照耀五十亿年。

太阳有没有伴星?

自从科学家通过先计算后观测的方法发现海王星之后,也想用这种方法去发现太阳的附近有没有新的星球,因为唯有如此,天文学中的一些矛盾现象才可以得到合理的解释。到底有没有?能不能发现呢?

太阳伴星是人们假设出来的一颗红矮星或棕矮星,距离太阳50,000至100个天文单位,并以“复仇女神”的名字来命名。

太阳可能存在伴星的理论最先由RichardA.Muller提出,因为他发现地球上出现大灭绝的时间是有周期性的,他提出每隔约两千六百万年有一次,去试图解释大灭绝的周期性。

该伴星推断其公转周期为两千六百万年,在经过奥尔特云带时,干扰了彗星的轨道,使数以百万计的彗星进人内太阳系,从而增加了与地球发生碰撞的机会。

现时,尚未有证据证明太阳存在伴星,也使得地球的周期性大灭绝原因受争论。

Matese和whitman则指出,周期性大灭绝的原因并不一定是太阳存在伴星,并提出可能是因为太阳系在银河系平面上下摆动,并会摄动奥尔特云,其影响与伴星存在的假设相似,但其上下摆动周期仍有待观测。