书城公版Volcanic Islands
19468400000036

第36章

These five varieties, with many intermediate ones, pass and repass into each other.As the compact varieties are quite subordinate to the others, the whole may be considered as laminated or striped.The laminae, to sum up their characteristics, are either quite straight, or slightly tortuous, or convoluted; they are all parallel to each other, and to the intercalating strata of obsidian; they are generally of extreme thinness; they consist either of an apparently homogeneous, compact rock, striped with different shades of grey and brown colours, or of crystalline feldspathic layers in a more or less perfect state of purity, and of different thicknesses, with distinct crystals of glassy feldspar placed lengthways, or of very thin layers chiefly composed of minute crystals of quartz and augite, or composed of black and red specks of an augitic mineral and of an oxide of iron, either not crystallised or imperfectly so.After having fully described the obsidian, I shall return to the subject of the lamination of rocks of the trachytic series.

The passage of the foregoing beds into the strata of glassy obsidian is effected in several ways: first, angulo-modular masses of obsidian, both large and small, abruptly appear disseminated in a slaty, or in an amorphous, pale-coloured, feldspathic rock, with a somewhat pearly fracture.Secondly, small irregular nodules of the obsidian, either standing separately, or united into thin layers, seldom more than the tenth of an inch in thickness, alternate repeatedly with very thin layers of a feldspathic rock, which is striped with the finest parallel zones of colour, like an agate, and which sometimes passes into the nature of pitchstone; the interstices between the nodules of obsidian are generally filled by soft white matter, resembling pumiceous ashes.Thirdly, the whole substance of the bounding rock suddenly passes into an angulo-concretionary mass of obsidian.Such masses (as well as the small nodules) of obsidian are of a pale green colour, and are generally streaked with different shades of colour, parallel to the laminae of the surrounding rock; they likewise generally contain minute white sphaerulites, of which half is sometimes embedded in a zone of one shade of colour, and half in a zone of another shade.The obsidian assumes its jet black colour and perfectly conchoidal fracture, only when in large masses; but even in these, on careful examination and on holding the specimens in different lights, Icould generally distinguish parallel streaks of different shades of darkness.

(FIGURE 6.OPAQUE BROWN SPHAERULITES, drawn on an enlarged scale.The upper ones are externally marked with parallel ridges.The internal radiating structure of the lower ones, is much too plainly represented.

FIGURE 7.A LAYER FORMED BY THE UNION OF MINUTE BROWN SPHAERULITES, INTERSECTING TWO OTHER SIMILAR LAYERS: the whole represented of nearly the natural size.)One of the commonest transitional rocks deserves in several respects a further description.It is of a very complicated nature, and consists of numerous thin, slightly tortuous layers of a pale-coloured feldspathic stone, often passing into an imperfect pitchstone, alternating with layers formed of numberless little globules of two varieties of obsidian, and of two kinds of sphaerulites, embedded in a soft or in a hard pearly base.The sphaerulites are either white and translucent, or dark brown and opaque;the former are quite spherical, of small size, and distinctly radiated from their centre.The dark brown sphaerulites are less perfectly round, and vary in diameter from the twentieth to the thirtieth of an inch; when broken they exhibit towards their centres, which are whitish, an obscure radiating structure; two of them when united sometimes have only one central point of radiation; there is occasionally a trace of or a hollow crevice in their centres.They stand either separately, or are united two or three or many together into irregular groups, or more commonly into layers, parallel to the stratification of the mass.This union in many cases is so perfect, that the two sides of the layer thus formed, are quite even; and these layers, as they become less brown and opaque, cannot be distinguished from the alternating layers of the pale-coloured feldspathic stone.The sphaerulites, when not united, are generally compressed in the plane of the lamination of the mass; and in this same plane, they are often marked internally, by zones of different shades of colour, and externally by small ridges and furrows.In the upper part of Figure 6, the sphaerulites with the parallel ridges and furrows are represented on an enlarged scale, but they are not well executed; and in the lower part, their usual manner of grouping is shown.In another specimen, a thin layer formed of the brown sphaerulites closely united together, intersects, as represented in Figure 7, a layer of similar composition; and after running for a short space in a slightly curved line, again intersects it, and likewise a second layer lying a little way beneath that first intersected.

The small nodules also of obsidian are sometimes externally marked with ridges and furrows, parallel to the lamination of the mass, but always less plainly than the sphaerulites.These obsidian nodules are generally angular, with their edges blunted: they are often impressed with the form of the adjoining sphaerulites, than which they are always larger; the separate nodules seldom appear to have drawn each other out by exerting a mutually attractive force.Had I not found in some cases, a distinct centre of attraction in these nodules of obsidian, I should have been led to have considered them as residuary matter, left during the formation of the pearlstone, in which they are embedded, and of the sphaerulitic globules.