书城公版Darwin and Modern Science
18991700000057

第57章

When two species, both perfectly fertile severally, produce on crossing a sterile progeny, there is a presumption that the sterility is due to the development in the hybrid of some substance which can only be formed by the meeting of two complementary factors. That some such account is correct in essence may be inferred from the well-known observation that if the hybrid is not totally sterile but only partially so, and thus is able to form some good germ-cells which develop into new individuals, the sterility of these daughter-individuals is sensibly reduced or may be entirely absent. The fertility once re-established, the sterility does not return in the later progeny, a fact strongly suggestive of segregation. Now if the sterility of the cross-bred be really the consequence of the meeting of two complementary factors, we see that the phenomenon could only be produced among the divergent offspring of one species by the acquisition of at least TWO new factors; for if the acquisition of a single factor caused sterility the line would then end. Moreover each factor must be separately acquired by distinct individuals, for if both were present together, the possessors would by hypothesis be sterile. And in order to imitate the case of species each of these factors must be acquired by distinct breeds. The factors need not, and probably would not, produce any other perceptible effects; they might, like the colour-factors present in white flowers, make no difference in the form or other characters. Not till the cross was actually made between the two complementary individuals would either factor come into play, and the effects even then might be unobserved until an attempt was made to breed from the cross-bred.

Next, if the factors responsible for sterility were acquired, they would in all probability be peculiar to certain individuals and would not readily be distributed to the whole breed. Any member of the breed also into which BOTH the factors were introduced would drop out of the pedigree by virtue of its sterility. Hence the evidence that the various domesticated breeds say of dogs or fowls can when mated together produce fertile offspring, is beside the mark. The real question is, Do they ever produce sterile offspring? I think the evidence is clearly that sometimes they do, oftener perhaps than is commonly supposed. These suggestions are quite amenable to experimental tests. The most obvious way to begin is to get a pair of parents which are known to have had any sterile offspring, and to find the proportions in which these steriles were produced. If, as I anticipate, these proportions are found to be definite, the rest is simple.

In passing, certain other considerations may be referred to. First, that there are observations favouring the view that the production of totally sterile cross-breds is seldom a universal property of two species, and that it may be a matter of individuals, which is just what on the view here proposed would be expected. Moreover, as we all know now, though incompatibility may be dependent to some extent on the degree to which the species are dissimilar, no such principle can be demonstrated to determine sterility or fertility in general. For example, though all our Finches can breed together, the hybrids are all sterile. Of Ducks some species can breed together without producing the slightest sterility; others have totally sterile offspring, and so on. The hybrids between several genera of Orchids are perfectly fertile on the female side, and some on the male side also, but the hybrids produced between the Turnip (Brassica napus) and the Swede (Brassica campestris), which, according to our estimates of affinity should be nearly allied forms, are totally sterile. (See Sutton, A.W., "Journ. Linn. Soc." XXXVIII. page 341, 1908.) Lastly, it may be recalled that in sterility we are almost certainly considering a meristic phenomenon. FAILURE TO DIVIDE is, we may feel fairly sure, the immediate "cause" of the sterility. Now, though we know very little about the heredity of meristic differences, all that we do know points to the conclusion that the less-divided is dominant to the more-divided, and we are thus justified in supposing that there are factors which can arrest or prevent cell-division. My conjecture therefore is that in the case of sterility of cross-breds we see the effect produced by a complementary pair of such factors. This and many similar problems are now open to our analysis.