书城科普绿色世界(地球一小时)
14325600000018

第18章 人类未来能源的发展方向(1)

从太阳能、风能、生物质能、氢能、清洁燃料、余热余压、潮汐能、核能以及节能等方面向读者详细的解读了当今世界的主要能源及其发展趋势,并且在解读能源的同时还向同学们讲解到有关环保的一些问题,比如说全球升温等问题,让读者在了解能源的同时,也学会珍惜身边的能源。

毋庸置疑,自人类文明开始以来,能源在人类文明历史中一直充当着无可比拟的角色。工业革命以来,世界能源消费剧增,煤炭、石油、天然气等化石能源资源消耗迅速,生态环境不断恶化,特别是温室气体排放导致日益严峻的全球气候变化,使人类社会的可持续发展受到严重威胁。

自上个世纪中期以来,人类开始迅速加快对能源的开发和使用。没有节制和计划性的能源开采以及低利用率的能源开采使用能源资源大幅度减少。在人类步入二十一世纪之后,能源短暂趋势开始在全球范围内显露出来。能源短缺还引起了包括人口增长与资源匮乏在内的一系列全球问题。人们为了争夺资源,甚至还发动了战争,引发了国家和民族间的矛盾,造成了巨大的损失。今天,能源的地位已经上升到关乎一个国家经济发展稳定的高度,能源的可持续供应的能力在现今社会显得尤为重要。

人类的生存与发展离不开能源,不可再生能源的有限性和利用过程中给人类带来的负面影响,决定了发展理想新能源是人类必须面对的课题。

绿色能源也称清洁能源,是环境保护和良好生态系统的象征和代名词。它可分为狭义和广义两种概念。狭义的绿色能源是指可再生能源,如水能、生物能、太阳能、风能、地热能和海洋能。这些能源消耗之后可以恢复补充,很少产生污染。广义的绿色能源则包括在能源的生产、及其消费过程中,选用对生态环境低污染或无污染的能源,如天然气、清洁煤和核能等。

一、取之不尽能源——海洋能

浩瀚的大海,不仅蕴藏着丰富的矿产资源,更有真正意义上取之不尽,用之不竭的海洋能源。它既不同于海底所储存的煤、石油、天然气等海底能源资源,也不同于溶于水中的铀、镁、锂、重水等化学能源资源。它有自己独特的方式与形态,就是用潮汐、波浪、海流、温度差、盐度差等方式表达的动能、势能、热能、物理化学能等能源。直接地说就是潮汐能、波浪能、海水温差能、海流能及盐度差能等。这是一种“再生性能源”,永远不会枯竭,也不会造成任何污染。

1.潮汐能

潮汐能是指海水潮涨和潮落形成的水的势能,其利用原理和水力发电相似。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。它包括潮汐和潮流两种运动方式所包含的能量,潮水在涨落中蕴藏着巨大能量,这种能量是永恒的、无污染的能量。

潮汐能是人类利用最早的海洋动力资源。一千多年前的唐朝,我国沿海居民就利用潮力碾谷子,在山东地区就发现早期的潮汐磨。11世纪的欧洲西海岸的潮汐磨房使早期工业国家走上发财致富的道路,并把它带到美洲新大陆。1600年法国人在加拿大东海岸建起美洲第一个潮汐磨。在英国萨福尔克至今还保留着一个12世纪的潮汐磨,还在碾谷子供游客参观。

20世纪初,欧、美一些国家开始研究潮汐发电。第一座具有商业实用价值的潮汐电站是1967年建成的法国郎斯电站。该电站位于法国圣马洛湾郎斯河口。郎斯河口最大潮差13.4米,平均潮差8米。一道750米长的大坝横跨郎斯河。坝上是通行车辆的公路桥,坝下设置船闸、泄水闸和发电机房。郎斯潮汐电站机房中安装有24台双向涡轮发电机,涨潮、落潮都能发电。总装机容量24万千瓦,年发电量5亿多度。

1968年,前苏联在其北方摩尔曼斯克附近的基斯拉雅湾建成了一座800千瓦的试验潮汐电站。1980年,加拿大在芬地湾兴建了一座2万千瓦的中间试验潮汐电站。试验电站、中试电站,那是为了兴建更大的实用电站做论证和准备用的。世界上适于建设潮汐电站的20几处地方,都在研究、设计建设潮汐电站。其中包括:美国阿拉斯加州的库克湾、加拿大芬地湾、英国塞文河口、阿根廷圣约瑟湾、澳大利亚达尔文范迪门湾、印度坎贝河口、俄罗斯远东鄂霍茨克海品仁湾、韩国仁川湾等地。随着技术进步,潮汐发电成本的不断降低,未来将不断会有大型现代潮汐电站建成使用。一些专家断言,未来无污染的廉价能源是永恒的潮汐。

2.波浪能

波浪能是指海洋表面波浪所具有的动能和势能,是海洋能源中能量最不稳定的一种能源。波浪能主要是由风的作用引起的海水沿水平方向周期性运动而产生的能量。

波浪能是巨大的,一个巨浪就可以把13吨重的岩石抛出20米高,一个波高5米,波长100米的海浪,在一米长的波峰片上就具有3120千瓦的能量,由此可以想象整个海洋的波浪所具有的能量该是多么惊人。据计算,全球海洋的波浪能达700亿千瓦,可供开发利用的为20~30亿千瓦。

波浪能量如此巨大,存在的如此广泛,自古吸引着沿海的能工巧匠们,想尽各种办法,企图驾驭海浪为人所用。水力可以满足全世界3倍的能源。

波浪能利用的关键是波浪能转换装置。1985年,英国在苏格兰的艾莱岛建造了一座75千瓦的振荡水柱波力电站,1991年建成且并入当地电网。1995年8月,英国建造了第一座商业性波浪能发电站,输出功率为2兆瓦,可满足2000户家庭的用电要求。日本已有数座波浪能发电站投入运行,其中兆瓦级的“海明号”波浪能发电船,是世界上最著名的波浪能发电装置。

3.海流能

海流能是指海水流动的动能,主要是指海底水道和海峡中较为稳定的流动以及由于潮汐导致的有规律的海水流动所产生的能量,是另一种以动能形态出现的海洋能。

海流能的利用方式主要是发电,其原理和风力发电相似,几乎任何一个风力发电装置都可以改造成为海流能发电装置。但由于海水的密度约为空气的1000倍,且必须放置于水下,故海流发电存在着一系列的关键技术问题,包括安装维护、电力输送、防腐、海洋环境中的载荷与安全性能等。此外,海流发电装置和风力发电装置的固定形式和透平设计也有很大的不同。海流装置可以安装固定于海底,也可以安装于浮体的底部,而浮体通过锚链固定于海上。

由于海流遍布大洋,纵横交错,川流不息,所以它们蕴藏的能量也是可观的。例如世界上最大的暖流——墨西哥洋流,在流经北欧时为1厘米长海岸线上提供的热量大约相当于燃烧600吨煤的热量。据估算世界上可利用的海流能约为0.5亿千瓦。

4.海洋温差能

海洋是世界上最大的太阳能接收器。6000万平方公里的热带海洋平均每天吸收的太阳能,相当于2500亿桶石油所含的热量。如果我们将海洋中储存的热能开发出来,这就是海洋热能转换,通常也称作“海洋温差发电”。

利用海洋温差发电的概念最早于1881年提出。但是世界上大部分科技发达的国家都处于纬度较高的温、寒带地区,或者是内陆国,没有发展海洋温差发电的基本条件。直到1979年在美国夏威夷建成世界上第一座海洋温差发电装置后,各国才开始重视这一新方法。

目前日本在海洋能开发利用方面十分活跃,专门成立了海洋温差发电研究所,并在海洋热能发电系统和热交换器技术领域领先美国。1999年,日本和印度联合进行的1000千瓦海洋温差发电实验成功,推动了该技术的实用化。

海洋温差电站对环境无不良影响,大规模开发时则需考虑对气候可能产生的影响。由于它可将深海富营养盐类的海水抽到上层来,将有利于海洋生物的生长繁殖。

海洋温差电站的经济性在目前还不能与燃油电站相竞争,但它是可再生能源发电中最有潜力的方式之一。若将发电、海水养殖及供应淡水结合起来综合开发,则可取得更好的经济效果。对边远的海岛,开发海洋温差能,当前在经济上就可能是有利的。

5.盐度差能

在海水和江河水相交汇处,还蕴含着一种鲜为人知的盐差能。据估算,地球上存在着26亿千瓦可利用的盐差能,其能量甚至比温差能还要大。海洋盐差能发电的设想是1939年由美国人首先提出的。盐差能发电的原理是:当把两种浓度不同的盐溶液倒在同一容器中时,那么浓溶液中的盐类离子就会自发地向稀溶中扩散,直到两者浓度相等为止。所以,盐差能发电,就是利用两种含盐浓度不同的海水化学电位差能,并将其转换为有效电能。

我们可以看到海洋盐差能的蕴藏量是比较可观的,而且利用它几乎不带来任何污染,所以盐差能是一种很清洁的能源。如果能够有效开发它的话,这将对我们目前的能源紧张和环境污染的严峻形势有很大的缓解,即使由于各种技术上的原因没能有效开发它,这对我们提高认识新能源、开发新能源也是很有用的。

二、能量巨大的能源——太阳能

太阳巨大的光和热,给地球上的万物带来了生机,一刻不停地向宇宙散发着大量的能量。据计算,太阳每秒钟发出的能量就约相当于1.3亿亿吨标准煤燃烧时所放出的全部热量。太阳发送到地球上的能量虽然很多,却只占它向外辐射能量的22亿分之一。如果除去地球表面大气层的反射和吸收的能量,那么真正到达地球表面的太阳能,约相当于目前全世界所发电能总和的20万倍。地球一天接收的太阳能,相当于全球一年所消耗的总能量的200倍。太阳发光、放热的历史已达40多亿年以上。据科学家们预计,太阳释放巨大能量的时间还将持续几十亿年。因此,太阳真可谓人类取之不尽、用之不竭的能源大宝库。

尽管人们对太阳能的开发利用如此丰富多彩,然而直到目前为止,人类所利用的太阳能与太阳照射到地球上的能量相比,仅是沧海之一粟,而且效率低、规模小,使这种宝贵能源大部分损失掉了。

随着科学技术的发展,人类对太阳能的利用也日益广泛。现在,太阳能已利用到许多方面:从人造卫星、宇宙飞船上用的太阳能电池,到太阳能飞机;从各种各样的太阳能热水器;到太阳能汽车;从不产生污染的太阳能电厂,到装在帽子上的小巧的太阳能收音机,真可说是一个琳琅满目的太阳能世界。

太阳能作为一种新能源,它与常规能源相比有三大优点:

第一,它是人类可以利用的最丰富的能源,可以说是取之不尽,用之不竭。

第二,在地球上无论何处都有太阳能,可以就地开发利用,不存在运输问题,尤其对交通不发达的农村、海岛和边远地区更具有利用的价值。

第三,太阳能是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡。

目前,太阳能电池的应用已从军事领域、航天领域进入工业、商业、农业等行业和通信、家用电器以及公用设施等领域,尤其可以分散地在边远地区、高山、沙漠、海岛和农村使用,以节省造价很高的输电线路。

但是在目前阶段,它的成本还很高,发出一千瓦电需要投资上万美元,因此大规模使用仍然受到经济上的限制。

从长远来看,随着太阳能电池制造技术的改进以及新的光电转换装置的发明,各国对环境的保护和对再生清洁能源的巨大需求,太阳能电池仍将是利用太阳辐射能比较切实可行的方法,可为人类未来大规模地利用太阳能开辟广阔的前景。

三、永不枯竭的能源——风能

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风电场发电量的两个主要因素是风电场风能资源情况和风电机组的选择。风电场风能资源决定于风能密度和可利用的风能年累积小时数。影响风力发电的物理因素有风向、风速、风能密度等,而风向、风速都是风能的重要指标。

风力发电所产生的能量是一种可再生能源,而且风力发电早已被人们利用来为生产和生活服务,如用于航行、推磨、抽水和发电等。据测算,地球上可利用的风能是水能的10倍。

风力发电是通过风力发电机把风能转化为电能,供人们使用的。常用的风力发电机是像飞机螺旋桨那样的水平轴风机,由风轮、机头、机尾、轮体、塔架等五部分组成。其中,风轮是把风能转化为机械能的主要部件,它通常由几片叶片组成,安装在机头上,模样与风扇差不多。风轮的直径越大接受的风能就越多,风机的功率就越高。而风能的大小又同风速有关,风能与风速的三次方成正比,也就是说,风速只要增加1倍,风能就增加7倍。

同太阳能相比,风能的能量密度太小,且比太阳能更不规则。因此,如果要建一座100万千瓦的风力发电站,就要架起几百台大型风力发电机,需占用的土地面积也较大。