我国西周时期有一位名叫商高的人,是当时的学问大家。他在数学方面的成就,被记载在我国最古老的天文学著作《周髀算经》中,其中就有数学知识勾股定理的内容。有一次,商高面见周公时,周公对古代伏羲构造周天历度的事迹感到不可思议,就请教商高数学知识从何而来,于是商高就以勾股定理的证明为例,解释数学知识的由来。他说:
数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,勾广三,股修四,经隅五。
商高这段话的意思就是说:当直角三角形的两条直角边分别为3和4时,“经隅”即“弦”则为5。以后人们就把这个事实说成“勾三股四弦五”。这就是后世著名的“勾股定理”。由此开创了我国古代数学的新纪元。
《周髀算经》成书时间大约在两汉之间,据考证明确者为西汉赵君卿所作,北周时期甄鸾重述,唐代李淳风等注。书中就记录了商高的那段话,表明“勾三股四弦五”这种关系早在大禹治水时就已经发现了。
《周髀算经》中明确记载了勾股定理的公式,并且详细证明了勾股定理。此外还有开平方的问题、等差级数的问题,使用了相当繁复的分数算法和开平方法,以及应用于古代的“四分历”计算的相当复杂的分数运算。
汉代数学成就除了《周髀算经》外,还有《九章算术》,它系统地总结了我国从先秦到西汉中期的数学成就。该书作者已无从查考,但西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补。魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣。”可知该书中理论成于周公之时。
《九章算术》全书分作9章,一共搜集了246个数学问题,按解题的方法和应用的范围分为9大类,每一大类作为一章。它们的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积,求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题。
《九章算术》在数学上有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。
《九章算术》是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着我国古代数学形成了完整的体系。
唐宋两代,《九章算术》都由国家明令规定为教科书。到了北宋,《九章算术》还曾由政府进行过刊刻,这是世界上最早的印刷本数学书。
南北朝是我国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》、《海岛算经》等数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。
《孙子算经》约成书于4至5世纪,作者生平和编写年不详。全书共分为3卷:上卷详细讨论了度量衡的单位,第一次讨论了筹算的制度和方法;中卷主要是关于分数的应用题,包括面积、体积、等比级数等计算题;下卷对后世的影响最为深远,如下卷第31题即著名的“鸡兔同笼”问题,后传至日本,被改为“鹤龟算”。
《海岛算经》是三国时期刘徽所作。这部书中讲述的都是利用标杆进行两次、三次至最复杂的四次测量来解决各种测量数学的问题。这些测量数学,正是我国古代非常先进的地图学的数学基础。
此外,刘徽对《九章算术》所作的注释工作也是很有名的,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了我国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。
隋唐时候,国子监算学科将汉、唐1000多年间的著名数学著作作为教科书,称之为“算经十书”。这10部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》。
除《周髀算经》、《九章算术》、《海岛算经》外,“算经十书”的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题,《张丘建算经》中的“百鸡问题”等等都很著名。而《缉古算经》中的三次方程解法,特别是用几何方法列三次方程的方法,也是很具特色的。
《缀术》是南北朝时期著名数学家祖冲之的著作。可惜这部书在唐宋之际失传了。宋人刊刻“算经十书”时就用当时找到的另一部算书《数术记遗》来充数。祖冲之关于圆周率的计算可精确到第六位小数,记载在《隋书·律历志》中:
古之九数,圆周率三,圆径率一,其术疏舛。自刘歆、张衡、刘徽、王蕃、皮延宗之徒,各设新率,未臻折衷。宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈、二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。又设开差幂,开差立,兼以正圆参之。指要精密,算氏之最者也。所著之书,名为《缀术》,学官莫能究其深奥,是故废而不理。
唐代立于学官的10部算经中,王孝通的《缉古算经》是唯一由唐代学者撰写的。王孝通出身于平民,少年时期便开始潜心钻研数学,隋朝时以历算入仕,入唐后被留用,唐初做过算学博士,后升任通直郎、太史丞。毕生从事数学和天文工作。
在我国数学史上,《缉古算经》是最早解三次方程的著作,它集中体现了我国数学家早在7世纪在建立和求解三次方程等方面所取得的重要成就。
我国古代数学经过从汉至唐的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是我国古代数学史上最光辉的一页。
秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且列举20多个取材于实践的高次方程的解法,最高为十次方程。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。
《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法。书中有的问题要求解十次方程,有的问题答案竟有180条之多。
1248年,李冶发表《测圆海镜》,该书是首部系统论述“天元术”即一元高次方程的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判将数学贬为“贱技”、“玩物”等长期存在的士风谬论。
李冶的《测圆海镜》和《益古演段》中,还讲述了直角三角形和内接圆所造成的各线段间的关系,这是我国古代数学中别具一格的几何学。
1261年,南宋杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。
此外,杨辉还著有《日用算法》、《杨辉算法》等。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。
在元代,王恂、郭守敬等制定《授时历》时,列出了三次差的内插公式。郭守敬运用几何方法求出相当于现在球面三角的两个公式。
元代朱世杰受李冶《测圆海镜》和杨辉著作的影响,著有《四元玉鉴》,他把“天元术”推广为“四元术”,即四元高次联立方程,并提出消元的解法,欧洲到1775年法国人别朱才提出同样的解法。
朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到1670年英国人格里高利和1676年牛顿才提出内插法的一般公式。
朱世杰的《算学启蒙》也是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。
宋元算书中所记载的辉煌成就再次证明:直到明代中期之前,我国科学技术的许多方面,是处在遥遥领先地位的。