书城教材教辅航空航天科学知识(青少年科普知识阅读手册)
10753300000017

第17章

航天器在无大气的星球上的软着陆,须应用制动火箭作为减速的动力并辅以着陆缓冲结构。反之,航天器未经专门减速装置的减速,而以较大速度直接冲撞着陆的方式称作硬着陆。由于着陆速度过大,航天器将完全或大部损坏。因此航天器硬着陆就是毁坏性的着陆,与一般航空器的“着陆”概念不同。前苏联的“月球”2号、5号、7号、8号探测器曾在月球上硬着陆;“金星”3号探测器曾在金星上硬着陆。

热气球

长久以来,人类一直幻想能在空中邀游。1783年,法国巴黎上空终于升起了第一个载人热气球,实现了人类多年的梦想。

早期的热气球很简陋,人们只能在地面上给气球中的空气加好温,然后载人升空。而气球上的人却无法操纵气球的升降,只有等气球空气冷却才能落下,很难保证安全。因此,热气球很快被淘汰,氢气球开始出现。但氢气与氧气混合极易爆炸,人们的安全仍然受到威胁。于是,20世纪50年代末,以丙烷为空气加热燃料的现代热气球又重新出现在世界各国,并且迅速发展。这时的热气球由搭乘者自由操纵,升降起落,安全可靠。

如今,热气球已发展成为航空体育运动项目之一,世界大赛、越洋大赛频繁举行。同时,热气球还成为蓝天游览的工具,新鲜、刺激,而空中监测大气污染,摄影录像,更是人类对热气球的最新利用。

热控百叶窗

热控百叶窗是航天器中用以调节固体表面热辐射性能的主动热控制装置。它利用机械方法自动适应航天器外界环境温度(或热流)和内部温度(或热流)的变化,不断改变一些固体表面的热辐射性能,调节热量的传递来控制它们的温度。

热控百叶窗主要用于调节航天器舱体或仪器的散热能力,配合其他手段以控制航天器各部分的温度。热控百叶窗由散热底板、转动叶片、驱动机构组成。散热底板的辐射率较高,转动叶片的辐射率很低。驱动机构用双金属片或充液波纹管等温度敏感元件制成,它根据散热底板的温度变化带动转动叶片旋转,改变遮挡散热底板的面积,获得不同的连续变化的组合辐射率,从而调节散热底板的温度。另一种叫作热控旋转盘的热控制装置,作用与热控百叶窗相似。它利用一平面扇轮作旋转运动,改变对散热底板的遮挡来调节温度。它的辐射率变化的可调倍数较小,但结构更为简单。

热控百叶窗最初用于航天器背阳面的红外辐射区,随着低吸收率、高辐射率涂层材料的出现,也已用于日照区。美国在1968年将第一组热控百叶窗应用于“雨云”号卫星。随后美国和前苏联在许多科学卫星、气象卫星和空间探测器上应用了热控百叶窗。中国在1971年3月3日发射的科学试验卫星“实践”1号上采用了一组热控百叶窗。

热管

热管是在航天器热控制中应用的一种有效的传热元件。它具有极高热导效果,一般由管壳、管芯和工质(工作介质)组成。1942年美国R.S.高勒提出了热管的概念。1963年美国G.M.格罗弗发明热管,此后热管的研究和应用得到迅速发展。1967年,美国第一次把一根“水-不锈钢”热管装在卫星上,进行了空间飞行试验,次年首次应用于“测地卫星”。从此热管在航天器热控制中的应用日益广泛。中国在1976年12月发射的返回型人造卫星上首次应用了热管。

软管漏斗式加油

这种加油设备由一个漏斗、一根长20~30米的软管和一个绞盘组成,漏斗是一个很轻的锥形容器,漏斗连在软管上,软管绕在绞盘上。空中加油时,加油机内的人员把加油装置选定在工作状态,绞盘转动,软管从飞机里自行放出。受油机的驾驶员看到加油机尾部的黄褐色灯亮,就知道一切都准备好了。他操纵飞机把机上受油管伸进漏斗,漏斗内部的加油接头自动夹紧受油管,油就开始自动流进受油机。加油完毕后,受油机驾驶员操纵飞机,降低飞行速度,在预定拉力下,受油管与漏斗断开。以上两种加油方式,虽然载油较多,但飞行速度慢、飞得低。但舰载飞机的速度快、飞得高,用上述方法给舰载机加油比较困难,于是又出现了一种新的加油方式,叫“伙伴加油”。它是两架性能基本相同的飞机,一架做加油机,机上带油和一套软管漏斗装置,另一架带武器。它们同时去执行同一任务。在离目的地2/3的空域时,加油机将油输给带武器的攻击机,而加油机则在某处等待,以便给自己的“伙伴”再加油。因此,人们将这种加油机称为“伙伴加油机”。

S

S-3A“北欧海盗”舰载反潜机

美国S-3A“北欧海盗”舰载反潜机装有较先进的反潜综合电子系统,其中数字计算机是整个反潜武器系统的核心。它可以迅速集中处理各种搜潜设备所获得的信息,进行判断、选择攻击方案、定位、攻击。机上载有60个声纳浮标,主被动式音响传感器,前视红外探侧仪,磁异探测仪等。因此它可用多种方式搜索潜艇。机上还配备了全景照相机、电子对抗设备和自动导航系统等。该型机于1974年装备部队。最大起飞重量21.32吨,最大速度816千米/小时,升限10670米,航程5550千米,机长12.26米,机高6.93米,翼展20.93米(折叠时8.99米),动力为2台涡扇发动机,功率242.96兆瓦,主要武器为炸弹、深水炸弹、火箭、导弹、鱼雷、水雷等。S-3B是S-3A“北欧海盗”反潜机的改进型,比S-3A增加了声纳情报处理功能以及装备了“鱼叉”导弹发射装置。最大飞行速度834千米/小时,作战航程3700千米。

SA365F“海豚-2”舰载直升机

SA365F“海豚-2”舰载直升机用于反舰和搜潜,1982年装备部队。旋翼直径11.93米,机身长13.74米,高4.01米(折叠后长11.93米、宽3.21米、高4.01米),机组人员2名,最大起飞重量4.1吨,最大速度296千米/小时,实用升限4575米,航程865千米。2台功率515千瓦发动机。主要武器为MK44/46鱼雷和4枚导弹。主要装备雷达、声纳浮标和磁探仪。

SH-3“海王”直升机

SH-3“海王”是美国西科斯基直升机公司研制的双发单旋翼带尾声桨多用途直升机。公司编号为S-61。主要用于运输、反潜、搜索、救援等,先后发展20余种型别,SH-3“海王”为美国海军的标准反潜直升机。最大平飞速度267千米/小时,实用升限4480米,各型共生产1100架。“海王”驾驶舱有正、副驾驶员,2名声纳员在主舱内,2套操纵系统。乘员在驾驶舱后面的机身左侧入舱门。大货舱门在座舱后面的机身右侧。“海王”改进型直升机增加了抵抗潜艇和低空导弹的能力。机上装有新型反潜设备,包括:新的轻型声纳、主动和被动声纳浮标、磁异探测器、航向姿态参考系统等。

SH-2F“海妖”舰载直升机

SH-2F“海妖”是美国卡曼公司研制的全天候多用途舰载直升机。主要用于执行搜索救援、观察和其他海上作业。该机是目前美军舰队在地中海、大西洋执行反潜、反舰导弹防御任务的主要机种。SH-2G“超海妖”是SH-2F的改进型,选装了前视红外传感器、电子干扰机等电子设备,反潜作战能力提高了4倍之多。最大平飞速度256千米/小时,实用升限7285米,最长续航时间5小时。

SS-6弹道导弹

1957年8月26日,前苏联成功地发射了两级液体洲际弹道导弹SS-6。同年10月4日,又利用由SS-6改装的运载火箭,发射了世界上第一颗人造地球卫星——“斯普特尼克”1号,首先闯入浩瀚的太空,开辟了人类的登天之路。这颗卫星呈球形,重83.6千克,发射卫星的运载火箭全长29米,是当时世界上最大的运载火箭。

SH-60B“海鹰”舰载直升机

美国SH-60B“海鹰”舰载直升机主要用于反潜、对舰监视和目标导向,1984年装备舰队。旋翼直径16.36米,机身长19.76米、高5.18米(折叠后长12.47米、宽3.26米、高4.04米),最大起飞重量9.93吨,最大速度296千米/小时,实用升限5790米,航程600千米。装有功率1.24兆瓦发动机2台。主要武器为2枚MK-46反潜鱼雷。主要设备有数据链和终端、塔康、浮标接收设备、磁探仪、雷达、声纳等。

S-70B舰载直升机

S-70B是在S-70的基础上改型发展而来的多用途舰载直升机,用以扩大美国海军的反潜和反舰能力,补充现有陆基和舰载固定翼飞机的不足,同时还可执行搜索救援、撤退伤员和垂直补给等。巡航速度272千米/小时。有多种型别,其中UH-60“黑鹰”为海军舰载反潜型。

“萨莫斯”侦察卫星

“萨莫斯”是美国早期的无线电传输型照相侦察普查卫星。它的轨道比“发现者”高,侦察的范围更广,寿命长。获得情报的速度比“发现者”快。“萨莫斯”第一次发射失败,第二次发射成功,向地面发回了1000多幅侦察照片,侦察的范围主要是前苏联、东欧和中国。照片证明了当时前苏联的洲际导弹只有14枚,而不是美国人估计的500枚,美国人大大松了一口气。

“闪电”号通信卫星

“闪电”号卫星绝大多数运行在偏心率很大的椭圆轨上,便于地球站跟踪。1颗卫星能保证前苏联和北半球许多国家在一天内通信8~10小时。3颗分布适当的卫星可实现昼夜通信。1974年7月改装的1颗闪电Ⅰ号卫星被送入地球静止卫星轨道,成为前苏联第1颗静止轨道试验通信卫星,也是“闪电”号卫星系列中唯一的静止卫星。

“闪电”号卫星重1000~1200千克,卫星上装有2副抛物面定向通信天线,其中一副作备份。仪器舱内装有通信转发器,与通信天线组成通信专用系统,完成通信转发任务。姿态控制分系统保证太阳电池翼始终朝向太阳,并使其中一副通信天线始终对准地球。每次通信可由卫星上“程序-时间”逻辑装置自动控制,或由地面发出遥控指令控制。近地点在南半球上空约460~630千米,远地点在北半球上空约4万千米,倾角为62.8°~65.5°,周期约12小时。卫星运行一圈大约有2/3的时间处于北半球上空,相对卫星通信地球站的视运动速度很慢,便于地球站跟踪。

“闪电”Ⅰ号卫星装有一个分米波转发器,输出峰值功率为40瓦或14瓦,可传输电视、电话、电报和传真信号。“闪电”Ⅱ号卫星装有厘米波转发器,增大了通信容量,提高了通信质量,并实现了多址联结。“闪电”Ⅲ号卫星除了传输的信号质量更高,卫星用途有所不同外,其他方面性能基本上与闪电Ⅱ号卫星相同。

“闪电”号卫星传输彩色电视采用SECAM-ⅡB制式,图像信号为调频方式,伴音采用行消隐期间的脉宽调制方式,或由在图像信号频谱之上的7.5兆赫的调频副载波传送。传输电话采用“调频-频分”多址制。

“双子星座”号飞船

美国载人飞船系列。从1965年3月到1966年11月共进行10次载人飞行。主要目的是在轨道上进行机动飞行、交会、对接和航天员试作舱外活动等,为“阿波罗”号飞船载人登月飞行作技术准备。“双子星座”号飞船重约3.2~3.8吨,最大直径3米,由座舱和设备舱两个舱段组成。座舱分为密封和非密封两部分。密封舱内安装显示仪表、控制设备、废物处理装置和供2名航天员乘坐的2把弹射座椅,还带有食物和水。无线电设备、生命保障系统和降落伞等安装在非密封舱内。座舱前端还有交会用的雷达和对接装置,座舱底部覆盖载入防热材料。设备舱分上舱和下舱。上舱中主要安装4台制动发动机。下舱中有轨道机动发动机及其燃料、轨道通信设备、燃料电池等。设备舱内壁还有许多流动冷却液的管子,因此设备舱又是个空间热辐射器。飞船在返回以前先抛弃设备舱下舱,然后点燃4台制动火箭,再抛掉设备舱上舱,座舱载入大气层,下降到低空时打开降落伞,航天员与座舱一起在海面上降落。

“水星”号飞船

水星号飞船,船总长约2.9米,最大直径1.8米,重约1.3~1.8吨。由圆台形座舱和圆柱形伞舱组成。在发射时,

“水星”号飞船的顶端还有一个高约5米的救生塔。座舱内可乘坐航天员1名,设计的最长飞行时间为2天。航天员躺在特制的座椅上,通过飞船舷窗、潜望镜和显示器可观测地球表面。在座舱外面大钝头处覆盖一层很厚的防热材料。飞船返回前点燃制动火箭,然后抛弃制动火箭组合件,载入大气层,下降到低空时打开降落伞,航天员与飞船一起降落在海上,由直升机和打捞船只回收。1961年5月5日,水星号飞船进行了首次亚轨道载人飞行,飞行高度186千米,飞行距离约480千米,飞行时间15分22秒,其中失重5分4秒,飞船在大西洋上溅落。同年7月21日“水星”号飞船进行了第2次亚轨道载人飞行,飞行高度190千米,飞行距离488千米。在空间运行中航天员曾试验使用手控装置保持飞行路线,进行滚动和偏航飞行,拍摄了地球陆地构造、气象云图和天体等照片。航天员发现在轨道飞行中通过舷窗观测地平线和天体,可使飞船正确定位,从而可取消座舱中笨重的潜望镜,使飞船作漂移式飞行以节省燃料。

“神舟”五号

1999年11月20~21日,中国载人航天工程第一艘“神舟”无人试验飞船飞行试验获得了圆满成功。2001年初至2002年底又相继研制并发射成功了“神舟”一~四号无人试验飞船,获得了宝贵的试验数据,为实施载人航天打下了坚实的基础。

“神舟”五号飞船是在无人飞船基础上研制的我国第一艘载人飞船,乘有1名航天员,在轨运行1天。整个飞行期间为航天员提供必要的生活和工作条件,同时将航天员的生理数据、电视图像发送地面,并确保航天员安全返回。

飞船由轨道舱、返回舱、推进舱和附加段组成。飞船的手动控制功能和环境控制与生命保障分系统为航天员的安全提供了保障。

2003年10月15日,由我国首位航天员杨利伟驾驶的“神舟”五号飞船飞向茫茫太空。

飞船由长征-二号F型运载火箭发射到近地点200千米、远地点350千米、倾角42.4°初始轨道,实施变轨后,进入343千米的圆轨道。飞船环绕地球14圈后在预定地区着陆。

“神舟”五号飞船载人航天飞行实现了中华民族千年飞天的夙愿,是中华民族智慧和精神的高度凝聚,是中国航天事业在新世纪的一座新的里程碑。

“神舟”七号

“神舟”七号是中国航天的重要阶段,现在“神舟”七号运载火箭已经开始研制,“神舟”七号将重点突破航天员出舱活动(太空行走)技术。

发射“神舟”七号飞船的仍然是长征二号F型运载火箭,此前这种火箭已经成功地将六艘神舟飞船送入太空,具有成熟的技术基础。