丢番图是古代希腊著名的数学家,关于他的年龄在任何书上都没有明确的记载,可是,在他的墓碑上却刻下了关于他的生平资料。如果依据墓碑上提供的生平资料,用数学方法去解答,就能算出数学家丢番图的年龄,这就是人们所说的“墓碑上的数学”。
丢番图的墓碑上到底刻了些什么呢?
过路人,丢番图长眠在此。倘若你懂得碑文的奥秘,它就会告诉你丢番图一生寿命究竟有多长。
“他的生命的六分之一是幸福的童年;再活了他生命的十二分之一,他度过了愉快的青年时代;后来丢番图结了婚,这样又度过了一生的七分之一;再过五年,他得了第一个儿子,感到很幸福,可是命运给这个孩子在世界上的光辉灿烂的生命只有他父亲寿命的一半;自从儿子死了以后,他努力在数学研究中寻求慰藉,又过了四年,终于结束了尘世的生涯。”
现在让我们从碑文中去寻求解答问题的各种数量关系。
先用方程解。我们假设丢番图的年龄是x岁;他的生命的六分之一是童年,童年便是x6;再活了他生命的十二分之一,就是再活了x12;他结婚又度过了一生的七分之一,便是x7;再过五年生了儿子,儿子的生命是父亲寿命的一半,那就是x2;儿子死后的四年,他结束了一生。
根据以上分析可以列出方程:
x=x6 x12 x7 5 x2 4
解:
84x=14x 7x 12x 42x 756
9x=756
x=84
这就是说,丢番图活了84岁。
也可用算术方法解。我们把丢番图的年龄看作整体“1”,童年是16,青年是112,结婚后度过了一生的17,又过了5年生儿子,儿子年龄是他父亲生命的12,又过4年,结束了一生。
由此说明(4 5)年恰好是他一生的(1-16-112-17-12)。列式为:
(4 5)÷(1-16-112-17-12)
=9÷84-14-7-12-4284
=9÷984
=84(岁)
由此可以得知,丢番图21岁结婚,38岁做了爸爸,儿子只活了42岁,儿子死的时候,丢番图是80岁,儿子死后4年,这位84岁的老人给自己的一生画了一个句号。
丢番图的主要著作有《算术》一书。在书中,除了记述代数原理外,还记述了不定方程及其解法。丢番图研究的不定方程问题,对后来的数学研究影响很大,后人也把不定方程称为“丢番图方程”。